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FIG. 2: Same as Fig. 1, except for the ratio �e=��. As in
Fig. 1, the value expected in the no-decay case is 1; here the
e�ects of decay are always pronounced.

J = Ĵc2
13
tan Æ. It is known, and is evident in Eq. (3), that

either a nonzero cos 2�23 or s13 breaks ����� symmetry.
In Fig. 1, we show the ratio ��=�� as a function of jUe3j

2

(within the range allowed by reactor experiments [9]),
with �23 = �=4 �xed. Even a small �13 has a relatively
large e�ect, particularly when the CP phase Æ is allowed
to be nonzero. However, direct measurement of the ratio
��=�� is very diÆcult, since events which are unique to
�� (double-bang and lollipop events) have much lower
detection probabilities [8].
In contrast, the �e=�� ratio can be directly probed in

a detector like IceCube by comparing the rate of shower
events to muon events [8]. This avor ratio is

�e
��

=

�
jUe1j

2

1� jUe1j2

��
1 +

��
��

�
: (5)

The �e fraction in the �1 mass eigenstate is insensitive
to values of �13 in the allowed range, shown by the �rst
factor in Eq. (5), where jUe1j � (c12c13)2. However, the
broken ����� symmetry a�ects the �e=�� ratio through
the second factor in Eq. (5), and this is a large e�ect.
When cos Æ is negative (positive) it decreases (increases)
the �� fraction of �1 with respect to the �� fraction, re-
sulting in an enhanced (suppressed) �e=�� ratio. This is
shown in Fig. 2. The curve with Æ = 0 is as in Ref. [2],
though we have updated the solar angle �12. For nonzero
Æ, new to this work, the avor ratio is signi�cantly farther
from the no-decay value of 1.
Note that the dependence of Eqs. (3) and (5) on the

CP phase Æ occurs only through cos Æ, since this is a
CP-conserving observable. Therefore, it is not necessary
to separate astrophysical neutrinos and antineutrinos,

|U
e3

|
2

1

5

10

20
15

φ e / 
φ µ

0 0.01 0.02 0.03 0.04 0.05

|U
e3

|
2

1

5

10

15

φ e / 
φ µ

FIG. 3: Upper panel: varying the solar angle, with �12 = 30Æ

(dashed), 32:5Æ (solid) and 35Æ (dotted). Lower panel: vary-
ing the atmospheric angle, with �23 = 40Æ (dashed), 45Æ

(solid) and 50Æ (dotted). The bottom and top curves cor-
respond to Æ = (0; �). As before, the region between the
curves is the allowed range, obtained for di�erent values of Æ.

which would be very diÆcult. The phase Æ is of crucial
importance in terrestrial long-baseline oscillation experi-
ments since CP-violating observables, based on the com-
parison of neutrino and antineutrino oscillation probabil-
ities, are proportional to sin Æ [13]. Farzan and Smirnov
have shown that a nonzero sin Æ may in principle also be
inferred by direct construction of the leptonic unitarity
triangle [14]. A key distinction is that the terrestrial ex-
periments use a beam of avor eigenstates, whereas neu-
trino decay can produce a pure mass eigenstate, allowing
for very large variation with Æ. Since measurement of
Æ in terrestrial experiments will be an extremely chal-
lenging task, it is intriguing to �nd an example where
the e�ect of varying Æ is huge. Finally, the avor ratios
are sensitive only to the \Dirac" phase Æ, and not the
\Majorana" phases; Majorana phases are relative phases
between mass eigenstates, and the beam consists of the
single mass eigenstate �1.

Variation of the atmospheric mixing angle �23 away
from 45Æ also breaks the �� � �� symmetry, as shown
in Eq. (3), and has a similar e�ect on the avor ratios.
Variation of the solar mixing angle changes the �e=��
ratio as it alters the �e fraction of �1. In Fig. 3, we
show how the variations of these angles within their one-
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sigma allowed ranges a�ects �e=��. Note that the size
of the variation due to uncertainties in the solar and at-
mospheric angles are quite similar. These uncertainties
will be reduced by existing or planned solar and long-
baseline experiments. The angle �13 may be measured
by future long baseline [13] or reactor [15] experiments,
and measuring Æ may require a neutrino factory.
To conclude, IceCube and other detectors have an ex-

cellent chance of detecting astrophysical neutrinos and
measuring their avor ratios in the next several years.
If neutrinos decay, the avor ratio �e=�� will be much
larger than its no-decay value of 1, and this e�ect is sig-

ni�cantly enhanced by nonzero �13 and Æ. Thus there
may be a new opportunity to measure the last unknown
values in the neutrino mixing matrix.
Acknowledgments.| We thank Stephen Parke for

illuminating discussions. J.F.B. and N.F.B. were sup-
ported by Fermilab (operated by URA under DOE con-
tract DE-AC02-76CH03000) and NASA grant NAG5-
10842; S.P. by DOE grant DE-FG03-94ER40833; and
T.J.W. by DOE grant DE-FG05-85ER40226, NASA
grant NAG5-13399, and a Vanderbilt Discovery Award.
T.J.W. also thanks the U. Wisconsin Phenomenology
Group for hospitality.

[1] J. G. Learned and S. Pakvasa, Astropart. Phys. 3, 267
(1995); H. Athar, M. Jezabek and O. Yasuda, Phys.
Rev. D 62, 103007 (2000); L. Bento, P. Keranen and
J. Maalampi, Phys. Lett. B 476, 205 (2000).

[2] J. F. Beacom, N. F. Bell, D. Hooper, S. Pakvasa and
T. J. Weiler, Phys. Rev. Lett. 90, 181301 (2003).

[3] J. F. Beacom and N. F. Bell, Phys. Rev. D 65, 113009
(2002).

[4] J. F. Beacom, N. F. Bell, D. Hooper, J. G. Learned,
S. Pakvasa and T. J. Weiler, hep-ph/0307151.

[5] R. M. Crocker, F. Melia and R. R. Volkas, Astrophys.
J. Suppl. 130, 339 (2000); Astrophys. J. Suppl. 141,
147 (2002); V. Berezinsky, M. Narayan and F. Vissani,
Nucl. Phys. B 658, 254 (2003); P. Keranen, J. Maalampi,
M. Myyrylainen and J. Riittinen, hep-ph/0307041.

[6] G. Barenboim and C. Quigg, Phys. Rev. D 67, 073024
(2003).

[7] J. Ahrens et al., astro-ph/0305196.
[8] J. F. Beacom, N. F. Bell, D. Hooper, S. Pakvasa and

T. J. Weiler, Phys. Rev. D, in press, hep-ph/0307025.
[9] M. Apollonio et al., Phys. Lett. B 466, 415 (1999); Eur.

Phys. J. C 27, 331 (2003); F. Boehm et al., Phys. Rev.
D 62, 072002 (2000); Phys. Rev. D 64, 112001 (2001).

[10] K. Nishikawa, talk at Lepton-Photon 2003 Conference,
August 2003, http://conferences.fnal.gov/lp2003/.

[11] S. N. Ahmed et al., nucl-ex/0309004.
[12] K. Hagiwara et al., Phys. Rev. D 66, 010001 (2002).
[13] J. Burguet-Castell, M. B. Gavela, J. J. Gomez-Cadenas,

P. Hernandez and O. Mena, Nucl. Phys. B 608, 301
(2001); H. Minakata, H. Nunokawa and S. Parke, Phys.
Lett. B 537, 249 (2002); Phys. Rev. D 66, 093012 (2002);
V. Barger, D. Marfatia and K. Whisnant, Phys. Lett. B
560, 75 (2003); P. Huber, M. Lindner and W. Winter,
Nucl. Phys. B 654, 3 (2003);

[14] Y. Farzan and A. Y. Smirnov, Phys. Rev. D 65, 113001
(2002).

[15] L. Mikaelyan, Nucl. Phys. Proc. Suppl. 91, 120
(2001); V. Martemyanov, L. Mikaelyan, V. Sinev,
V. Kopeikin and Y. Kozlov, hep-ex/0211070; H. Mi-
nakata, H. Sugiyama, O. Yasuda, K. Inoue and
F. Suekane, Phys. Rev. D 68, 033017 (2003); P. Hu-
ber, M. Lindner, T. Schwetz and W. Winter, Nucl. Phys.
B 665, 487 (2003); M. H. Shaevitz and J. M. Link,
hep-ex/0306031.

http://arXiv.org/abs/hep-ph/0307151
http://arXiv.org/abs/hep-ph/0307041
http://arXiv.org/abs/astro-ph/0305196
http://arXiv.org/abs/hep-ph/0307025
http://conferences.fnal.gov/lp2003/
http://arXiv.org/abs/nucl-ex/0309004
http://arXiv.org/abs/hep-ex/0211070
http://arXiv.org/abs/hep-ex/0306031

